57. Pi, L.; Björklund, E.; Rees, G. J.; Song, W.; Gong, C.; Marie, J.-J.; Gao, X.; Pu, S. D.; Juelsholt, M.; Chater, P. A.; Park, J.; Kim, M. G.; Choi, J.; Agrestini, S.; Garcia-Fernandez, M.; Zhou, K.-J.; Robertson, A. W.; Weatherup, R. S.; House, R. A.; Bruce, P. G., Factors affecting capacity and voltage fading in disordered rocksalt cathodes for lithium-ion batteries. Matter 2025, 8 (3).

55. Song, W. X.; Pérez-Osorio, M. A.; Chen, J.; Ding, Z. Y.; Marie, J. J.; Juelsholt, M.; House, R. A.; Bruce, P. G.; Nellist, P. D., Visualization of Tetrahedral Li in the Alkali Layers of Li-Rich Layered Metal Oxides. J Am Chem Soc 2024, 146 (34), 23814-23824.

54. Song, W.; Chen, J.; Ding, Z.; House, R. A.; Slater, T. J. A.; Bruce, P. G.; Nellist, P. D., Imaging Structural Evolution on Cycling of Li- and Mn-Rich Cathode Materials Using Combined ADF and Ptychography in STEM. Microsc Microanal 2024, 30 (Supplement_1).

53. Ramesh, N.; Banerjee, H.; Swallow, J. E. N.; Bjorklund, E.; Dean, A.; Didwal, P.; Fraser, M.; Phelan, C. M. E.; An, L.; Singh, J.; Lewis, J.; Song, W.; House, R. A.; Morris, A. J.; Weatherup, R. S.; Nicholls, R. J., Atomistic Interpretation of the Oxygen K-Edge X-ray Absorption Spectra of Layered Li-Ion Battery Cathode Materials. Chem Mater 2024, 36 (22), 11051-11064.

52. Nagendran, S.; Mahadevegowda, A.; Vema, S.; Danaie, M.; Song, W.; Wen, B.; Ducati, C.; Grey, C. P., Cation ordering in low-temperature niobium-rich NbWO bronzes: New anodes for high-rate Li-ion batteries. Matter 2024, 7 (10), 3567-3586.

51. Huang, Y.-T.; Schleuning, M.; Hempel, H.; Zhang, Y.; Rusu, M.; Unold, T.; Musiienko, A.; Karalis, O.; Jung, N.; Zelewski, S. J.; Britton, A. J.; Ngoh, N.; Song, W.; Hirst, L. C.; Sirringhaus, H.; Stranks, S. D.; Rao, A.; Levine, I.; Hoye, R. L. Z., Elucidating the Role of Ligand Engineering on Local and Macroscopic Charge-Carrier Transport in NaBiS2 Nanocrystal Thin Films. Adv Funct Mater 2024, 34 (29), 2310283.

50. Zhang, R.; Sheader, A.; Song, W.; Liberti, E.; Bruce, P.; Nellist, P., Characterising and Minimising Damage Effects in Air- and Beam-sensitive Solid-state Li-ion Battery Materials. Microsc Microanal 2022, 28 (S1), 2182-2184.

49. Song, W. X.; Perez-Osorio, M. A.; Marie, J. J.; Liberti, E.; Luo, X. N.; O’Leary, C.; House, R. A.; Bruce, P. G.; Nellist, P. D., Direct imaging of oxygen shifts associated with the oxygen redox of Li-rich layered oxides. Joule 2022, 6 (5), 1049-1065.

48. Song, W.; Marie, J. J.; House, R. A.; Bruce, P. G.; Nellist, P. D., Imaging Structural Defects and Associated Oxygen Positions in Li-rich Li1.2Ni0.13Mn0.54Co0.13O2. Microsc Microanal 2022, 28 (S1), 2606-2607.

47. Luo, X.; Varambhia, A.; Song, W.; Ozkaya, D.; Lozano-Perez, S.; Nellist, P. D., High-precision atomic-scale strain mapping of nanoparticles from STEM images. Ultramicroscopy 2022, 239, 113561.

46. Hedley, E.; Pi, L.; Danie, M.; Song, W.; Liberti, E.; Bruce, P. G.; Nellist, P. D., A Quantitative Understanding of the Short Range Order in Disordered Rocksalt Cathode Materials. Microsc Microanal 2022, 28 (S1), 458-460.

45. Song, W.; Osorio, M.; Marie, J.; Liberti, E.; Luo, X.; O’Leary, C.; House, R.; Bruce, P.; Nellist, P., Direct Imaging of Oxygen Sub-lattice Deformation in Li-rich Cathode Material Using Electron Ptychography. Microsc Microanal 2021, 27 (S1), 2724-2726.

44. Lee, H. J.; Brown, Z.; Zhao, Y.; Fawdon, J.; Song, W.; Lee, J. H.; Ihli, J.; Pasta, M., Ordered LiNi0.5Mn1.5O4 Cathode in Bis(Fluorosulfonyl)Imide-Based Ionic Liquid Electrolyte: Importance of The Cathode–Electrolyte Interphase. Chem Mater 2021, 33 (4), 1238-1248.

43. Pasta, M.; Armstrong, D.; Brown, Z. L.; Bu, J.; Castell, M. R.; Chen, P.; Cocks, A.; Corr, S. A.; Cussen, E. J.; Darnbrough, E.; Deshpande, V.; Doerrer, C.; Dyer, M. S.; El-Shinawi, H.; Fleck, N.; Grant, P.; Gregory, G. L.; Grovenor, C.; Hardwick, L. J.; Irvine, J. T. S.; Lee, H. J.; Li, G.; Liberti, E.; McClelland, I.; Monroe, C.; Nellist, P. D.; Shearing, P. R.; Shoko, E.; Song, W.; Jolly, D. S.; Thomas, C. I.; Turrell, S. J.; Vestli, M.; Williams, C. K.; Zhou, Y.; Bruce, P. G., 2020 roadmap on solid-state batteries. Journal of Physics: Energy 2020, 2 (3), 032008.

44. Song, W.; Scholtis, E. S.; Sherrell, P. C.; Tsang, D. K. H.; Ngiam, J.; Lischner, J.; Fearn, S.; Bemmer, V.; Mattevi, C.; Klein, N.; Xie, F.; Riley, D. J., Electronic structure influences on the formation of the solid electrolyte interphase. Energ. Environ. Sci. 2020, 13 (12), 4977-4989.

41. Song, W. X.; Jiang, Q. F.; Xie, X. Y.; Brookfield, A.; McInnes, E. J. L.; Shearing, P. R.; Brett, D. J. L.; Xie, F.; Riley, D. J., Synergistic storage of lithium ions in defective anatase/rutile TiO2 for high-rate batteries. Energy Storage Mater. 2019, 22, 441-449.

40. Song, W.; Liu, X.; Wu B.; Brandon N.; Shearing, P. R.; Brett, D. J. L.; Xie, F.; Riley, D. J., Sn@C evolution from yolk-shell to core-shell in carbon nanofibers with suppressed degradation of lithium storage. Energy Storage Materials 2018, 18, 229-237.

39. Song, W.; Ji, K.; Aguadero, A.; Shearing, P. R.; Brett, D. J. L.; Xie, F.; Riley, D. J., Co3O4 hollow nanospheres doped with ZnCo2O4 via thermal vapor mechanism for fast lithium storage. Energy Storage Materials 2018, 14, 324-334.

38. Pan, C.-c.; Yang, Y.-c.; Hou, H.-s.; Jing, M.-j.; Zhu, Y.-r.; Song, W.-x.; Ji, X.-b., Effect of lithium content on electrochemical property of Li1+x(Mn0.6Ni0.2Co0.2)1-xO2 (0≤x≤0.3) composite cathode materials for rechargeable lithium-ion batteries. Transactions of Nonferrous Metals Society of China 2018, 28, 145-150.

37. Song, W.; Brugge, R.; Theodorou, I. G.; Lim, A. L.; Yang, Y.; Zhao, T.; Burgess, C. H.; Johnson, I. D.; Aguadero, A.; Shearing, P. R.; Brett, D. J. L.; Xie, F.; Riley, D. J., Enhancing Distorted Metal–Organic Framework-Derived ZnO as Anode Material for Lithium Storage by the Addition of Ag2S Quantum Dots. ACS Appl Mater Interfaces 2017, 9, 37823-37831.

36. Song, W.; Lischner, J.; Rocha, V. G.; Qin, H.; Qi, J.; Hadden, J. H. L.; Mattevi, C.; Xie, F.; Riley, D. J., Tuning the Double Layer of Graphene Oxide through Phosphorus Doping for Enhanced Supercapacitance. ACS Energy Letters 2017, 2, 1144-1149.

35. Song, W.; Hou, H.; Ji, X., Progress in the Investigation and Application of Na₃V₂(PO₄)₃ for Electrochemical Energy Storage. Acta Physico-Chimica Sinica 2017, 33, 103-129.

34. Pan, C.-c.; Zhu, Y.-r.; Yang, Y.-c.; Hou, H.-s.; Jing, M.-j.; Song, W.-x.; Yang, X.-m.; Ji, X.-b., Influences of transition metal on structural and electrochemical properties of Li[NixCoyMnz]O2 (0.6≤x≤0.8) cathode materials for lithium-ion batteries. Transactions of Nonferrous Metals Society of China 2016, 26, 1396-1402.

33. Chen, J.; Zou, G.; Zhang, Y.; Song, W.; Hou, H.; Huang, Z.; Liao, H.; Li, S.; Ji, X., Activated Flake Graphite Coated with Pyrolysis Carbon as Promising Anode for Lithium Storage. Electrochim Acta 2016, 196, 405-412.

32. Song, W.; Chen, J.; Ji, X.; Zhang, X.; Xie, F.; Riley, D. J., Dandelion-shaped TiO2/multi-layer Graphene Composed of TiO2(B) Fibrils and Anatase TiO2 Pappi Utilizing Triphase Boundaries for Lithium Storage. J Mater Chem A 2016, 4, 8762-8768.

31. Chen, J.; Song, W.; Hou, H.; Zhang, Y.; Jing, M.; Jia, X.; Ji, X., Ti3+ Self-Doped Dark Rutile TiO2 Ultrafine Nanorods with Durable High-Rate Capability for Lithium-Ion Batteries. Adv Funct Mater 2015, 25, 6793-6801.

30. Hou, H.; Jing, M.; Yang, Y.; Zhang, Y.; Song, W.; Yang, X.; Chen, J.; Chen, Q.; Ji, X., Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries. J Power Sources 2015, 284, 227-235.

29. Chen, J.; Hou, H.; Yang, Y.; Song, W.; Zhang, Y.; Yang, X.; Lan, Q.; Ji, X., An Electrochemically Anodic Study of Anatase TiO2 Tuned through Carbon-Coating for High-performance Lithium-ion Battery. Electrochim Acta 2015, 164, 330-336.

28. Pan, C.-c.; Banks, C. E.; Song, W.-x.; Wang, C.-w.; Chen, Q.-y.; Ji, X.-b., Recent development of LiNixCoyMnzO2: Impact of micro/nano structures for imparting improvements in lithium batteries. Transactions of Nonferrous Metals Society of China 2013, 23, 108-119.

27. Zhu, Y.; Wu, Z.; Jing, M.; Hou, H.; Yang, Y.; Zhang, Y.; Yang, X.; Song, W.; Jia, X.; Ji, X., Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A 2015, 3, 866-877.

26. He, P.; Liu, L.; Song, W.; Xiong, G.; Fisher, T. S.; Chen, T., Large-scale synthesis and activation of polygonal carbon nanofibers with thin ribbon-like structures for supercapacitor electrodes. RSC Adv 2015, 5, 31837-31844.

25. Hou, H.; Jing, M.; Yang, Y.; Zhang, Y.; Zhu, Y.; Song, W.; Yang, X.; Ji, X., Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries. J Mater Chem A 2015, 3, 2971-2977.

24. Song, W.; Ji, X.; Chen, J.; Wu, Z.; Zhu, Y.; Ye, K.; Hou, H.; Jing, M.; Banks, C. E., Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries. Phys Chem Chem Phys 2015, 17, 159-165.

23. Zhu, Y.; Wu, Z.; Jing, M.; Yang, X.; Song, W.; Ji, X., Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J Power Sources 2015, 273, 584-590.

22. Zhu, Y.; Pu, X.; Song, W.; Wu, Z.; Zhou, Z.; He, X.; Lu, F.; Jing, M.; Tang, B.; Ji, X., High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. Journal of Alloys and Compounds 2014, 617, 988-993.

21. Zhu, Y.; Wu, Z.; Jing, M.; Song, W.; Hou, H.; Yang, X.; Chen, Q.; Ji, X., 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochim Acta 2014, 149, 144-151.

20. Zhu, Y.; Ji, X.; Wu, Z.; Song, W.; Hou, H.; Wu, Z.; He, X.; Chen, Q.; Banks, C. E., Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. J Power Sources 2014, 267, 888-900.

19. Hou, H.; Yang, Y.; Zhu, Y.; Jing, M.; Pan, C.; Fang, L.; Song, W.; Yang, X.; Ji, X., An Electrochemical Study of Sb/Acetylene Black Composite as Anode for Sodium-Ion Batteries. Electrochim Acta 2014, 146, 328-334.

18. Song, W.; Wu, Z.; Chen, J.; Lan, Q.; Zhu, Y.; Yang, Y.; Pan, C.; Hou, H.; Jing, M.; Ji, X., High-voltage NASICON Sodium Ion Batteries: Merits of Fluorine Insertion. Electrochim Acta 2014, 146, 142-150.

17. Song, W.; Cao, X.; Wu, Z.; Chen, J.; Zhu, Y.; Hou, H.; Lan, Q.; Ji, X. Investigation of the Sodium Ion Pathway and Cathode Behavior in Na₃V₂(PO₄)₂F₃ Combined via a First Principles Calculation. Langmuir, 2014, 30, 12438–12446.

16. Hou, H.; Jing, M.; Yang, Y.; Zhu, Y.; Fang, L.; Song, W.; Pan, C.; Yang, X.; Ji, X. Sodium/Lithium Storage Behavior of Antimony Hollow Nanospheres for Rechargeable Batteries. ACS Appl Mater Interfaces, 2014, 6, 16189–16196.

15. Yang, Y.; Qiao, B.; Yang, X.; Fang, L.; Pan, C.; Song, W.; Hou, H.; Ji, X. Lithium Titanate Tailored by Cathodically Induced Graphene for an Ultrafast Lithium Ion Battery. Adv Funct Mater, 2014, 24, 4349–4356.

14. Song, W.; Ji, X.; Wu, Z.; Yang, Y.; Zhou, Z.; Li, F.; Chen, Q.; Banks, C. E. Exploration of ion migration mechanism and diffusion capability for Na₃V₂(PO₄)₂F₃ cathode utilized in rechargeable sodium-ion batteries. J Power Sources, 2014, 256, 258–263.

13. Song, W.; Ji, X.; Zhu, Y.; Zhu, H.; Li, F.; Chen, J.; Lu, F.; Yao, Y.; Banks, C. E. Aqueous Sodium-Ion Battery using a Na₃V₂(PO₄)₃ Electrode. Chemelectrochem, 2014, 1, 871–876.

12. Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Li, F.; Yao, Y.; Banks, C. E. Multifunctional dual Na₃V₂(PO₄)₂F₃ cathode for both lithium-ion and sodium-ion batteries. RSC Adv, 2014, 4, 11375–11383.

11. Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Yao, Y.; Huangfu, K.; Chen, Q.; Banks, C. E. Na₂FePO₄F cathode utilized in hybrid-ion batteries: a mechanistic exploration of ion migration and diffusion capability. J Mater Chem A, 2014, 2, 2571–2577.

10. Song, W.; Cao, X.; Wu, Z.; Chen, J.; Huangfu, K.; Wang, X.; Huang, Y.; Ji, X. A study into the extracted ion number for NASICON structured Na₃V₂(PO₄)₃ in sodium-ion batteries. Phys Chem Chem Phys, 2014, 16, 17681–17687.

9. Hou, H.; Cao, X.; Yang, Y.; Fang, L.; Pan, C.; Yang, X.; Song, W.; Ji, X. NiSb alloy hollow nanospheres as anode materials for rechargeable lithium ion batteries. Chem Commun, 2014, 50, 8201–8203.

8. Song, W.; Ji, X.; Wu, Z.; Zhu, Y.; Yang, Y.; Chen, J.; Jing, M.; Li, F.; Banks, C. E. First exploration of Na-ion migration pathways in NASICON structure Na₃V₂(PO₄)₃. J Mater Chem A, 2014, 2, 5358–5362.

7. Song, W.; Ji, X.; Yao, Y.; Zhu, H.; Chen, Q.; Sun, Q.; Banks, C. E. A promising Na₃V₂(PO₄)₃ cathode for high energy batteries. Phys Chem Chem Phys, 2014, 16, 3055–3061.

6. Yang, Y.; Lu, F.; Zhou, Z.; Song, W.; Chen, Q.; Ji, X. Electrochemical exfoliation of graphene sheets in room temperature ionic liquids and their electrochemical properties. Electrochim Acta, 2013, 113, 9–16.

5. Yang, Y.; Ji, X.; Yang, X.; Wang, C.; Song, W.; Chen, Q.; Banks, C. E. Electrochemically triggered graphene sheets through cathodic exfoliation for lithium ion batteries anodes. RSC Adv, 2013, 3, 16130–16135.

4. Zhu, Y.; Ji, X.; Pan, C.; Sun, Q.; Song, W.; Fang, L.; Chen, Q.; Banks, C. E. A carbon quantum dot decorated RuO₂ network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ Sci, 2013, 6, 3665–3675.

3. Song, W.; Ji, X.; Deng, W.; Chen, Q.; Shen, C.; Banks, C. E. Graphene ultracapacitors: structural impacts. Phys Chem Chem Phys, 2013, 15, 4799–4803.

2. Song, W.; Ji, X.; Pan, C.; Zhu, Y.; Chen, Q.; Banks, C. E. A Na₃V₂(PO₄)₃ cathode material for use in hybrid lithium-ion batteries. Phys Chem Chem Phys, 2013, 15, 14357–14363.

1. Song, W.; Liu, S. A sodium vanadium three-fluorophosphate cathode for rechargeable batteries synthesized by carbothermal reduction. Solid State Sciences, 2013, 15, 1–6.